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Abstract

The micromechanical interpretation of strain tensor for granular assemblies has been a subject of considerable sci-
entific interest in recent years. This paper gives an overview on 10 different microstructural strain definitions that can be
found in the granular mechanics literature. After a theoretical introduction and comparison, the different versions are
compared to each other and to the macro-level strain with the help of discrete element simulations.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Strain is a fundamental concept in classical continuum mechanics. Several versions are known such as
left or right Cauchy-Green strain tensor, Piola deformation tensor, Green-Lagrange strain tensor,
Euler-Almansi strain etc. However, all these versions can be expressed in terms of the gradient tensor of
the translation field that is based on the initial geometry (see, for instance, Holzapfel (2001)): the translation
gradient tensor plays a basic role in all continuum theories. The translation gradient is also fundamental in
the non-classical theories such as Cosserat or Mindlin theories.

The different continuum-mechanical strains intend to characterize the deformations of an infinitesimally
small representative volume element around the analyzed point of a continuous domain. Granular assem-
blies, on the other hand, consist of individual grains of finite size, each of them having their own transla-
tional and rotational degrees of freedom. These displacements are strongly heterogeneous: their size and
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magnitude may significantly vary from grain to grain. So the particle translations cannot be estimated as a
continuously differentiable translation field.

Establishing a link between particle-level displacements and macro-level deformations is important for
those researchers who intend to develop micromechanically based constitutive theories, as well as for those
investigators who want to interpret the results of their discrete element simulations from a macro-level context.

There exist many different ideas to interpret the strain tensor from a microstructural point of view. Most
of them belong to one of the following two approaches:

(1) Strains based on an equivalent continuum:
In these approaches the assembly is replaced by a continuous domain, and a suitable translation field is
assigned to it in such a way that the translations of the characteristic points of the equivalent contin-
uum be equal to the translations of the particle centers. The gradient of this translation field is then
determined, and expressed in terms of the particle displacements and the microlevel geometrical char-
acteristics. The different versions deviate from each other in the definition of the equivalent continuum.
(2) Best-fit strains:
In these versions a translation gradient tensor is found that gives the smallest deviation from the char-
acteristic displacements of the system. Depending on the kind of displacement to be approximated,
different versions of best-fit strains are gained.

The aim of this paper is to give an overview on these approaches, and to evaluate how closely they
approximate the macro-level deformations of the analyzed assembly. While the description of the influence
of the microstructure on the overall deformations (and the modification of the microstructure during defor-
mation) is an important fundamental question, from the perspective of practical application it is even more
important to analyze whether the different strain versions are in a good agreement with the overall defor-
mations of the assembly.

Section 2 introduces 10 different microstructural strain tensors. Section 3 presents the results of discrete
element simulations on their behavior, and Section 4 contains the most important conclusions.

2. An overview of the existing microstructural strain tensors
2.1. Notations and basic assumptions

The analyzed assemblies must contain at least three grains in the case of 2D analysis, and at least four
grains in 3D analysis. All strain versions are based on small displacements of the particles, and on the
geometry that is valid at the beginning of the displacements.

The particle displacements are characterized in terms of the translations of the particle centers, and the
rigid-body rotations of the grains around their centers. The detailed description of the deformations of the
particles is not included in the analysis: instead, the deformations are assumed to be restricted to the small
neighborhood of the contacts.

Let du? denote the translation of the centre of particle p, while dw? is the rigid-body-like rotation of p
about its centre. The notation ‘d’ expresses that these displacements are small. Particles p and ¢ touch each
other in contact ¢, the material points pc and gc (belonging to particles p and g, respectively) form the con-
tact. The contact vectors 7 and # point from the particle centers to the contact. The translation of pc and
gc are

duf* = du + e’ dosy, (1)
duf = duf + s,:,-krjc dow!. (2)
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(Here & is the permutation symbol.) The contact deformation is understood as the relative translation of
pc and gc (p is the ‘first’ and ¢ is the ‘second’ entity of the contact)

dof = duf — du® = duf + e dof — duf — g dwf. (3)
Finally, de;; denotes the left gradient of the vector field du;:de; = du;/dx;.

2.2. Strains based on an equivalent continuum

2.2.1. The strain of Bagi

The strain proposed in Bagi (1993, 1996) is valid for 2D or 3D analysis of particles with arbitrary convex
shape. The definition is based on the equivalent continuum formed by the space cells of the system. The
space cells are triangles in 2D and tetrahedra in 3D, formed by the centers of neighboring (but not neces-
sarily contacting) particles (see Fig. 1). The boundary of this equivalent continuum goes through the centers
of boundary particles.

A continuous translation field is assigned to this equivalent continuum in the following way. The trans-
lations of the nodes are, by definition, equal to the translations of the corresponding particle centers. In any
other point of a cell the translation is defined by the linear interpolation of the nodal translations. (Note that
inside of a cell the translation field is continuously differentiable, and its gradient is constant within the cell.)

Let dél.Lj denote the (constant) left gradient of the translation field in cell L. Its volume average for the
whole domain is

_ 1 L.
de,-j = I_/ Z VL dele m 3D7 (33.)
(L)
1 1
de; = yi %AL de; in 2D, (3b)

where V* is the volume (in 2D A is the area) of the Lth cell, and V is the sum of the volume (4 is the total
area) of all the cells. The translation gradient déff can be expressed with the help of a surface integral

dé{; = % % du;n;dS (4a)
(s4)

or in 2D analysis

det, = /% f{ dujn;di. (4b)
(")

Fig. 1. The space cells.
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Here V> and A" are the volume or area of space cell L, du; is the translation vector of the boundary point,
and n, is the outwards unit normal vector of the boundary of the cell in the same point. The integration is
carried out along the closed boundary surface S” in 3D, or along the boundary line /~ in 2D. Applying (4),
the volume average in (3) can be expressed in terms of the dAuf = duj — duf relative translations of the
pairs of grains forming the branches of the space cells

de; = % > dAusds, (5)
(c)

where df is the complementary area vector belonging to the c the pair of grains (Bagi, 1995, 1996), a geo-
metrical characteristic of the local neighborhood of the particle pair. (The details of the derivation can be
found in Bagi (1996).) The complementary area vector can be thought of as the dual variable of the branch
vector in the sense that if the scalar product of the branch vector and the complementary area vector is
determined for every branch of the equivalent continuum, and then these products are summed, the total
volume (area in 2D) of the analyzed domain can be determined

1, .. L, ..
szg(lidi) or AZZi(lzdi) (6)
(c) (c)

The antisymmetric part of the tensor de;; is the average rigid-body-like rotation of the cells, and its sym-
metric part expresses the average deformation of the equivalent continuum. Hence the symmetric part of (5)
is, by definition, the microstructural strain tensor of the analyzed assembly.

Note that in 3D the volume average in (3) can be expressed as a surface integral

de; :% fdu_,-n,- dS in 3D, and (7)
(8)
de; 2}4 j{dujn,-dl in 2D. (8)
U]
Here V' and A are the total volume or area of the applied equivalent continuum, du; is the translation of a
boundary point where 7; is the outwards unit normal. The integration is carried out along the closed bound-

ary of the whole equivalent continuum. Fig. 2 illustrates the 2D case and the geometrical quantities applied
in (8).

2.2.2. The Kruyt—Rothenburg strain
The next microstructural strain appeared as early as 1980 in the Ph.D dissertation of L. Rothenburg

(1980), but it was published only sixteen years later, in Kruyt and Rothenburg (1996).

n

Fig. 2. The geometrical characteristics of the equivalent continuum of the Bagi strain in 2D.
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Fig. 3. The Kruyt-Rothenburg equivalent continuum.

The definition is valid for 2D assemblies of particles with any convex shape. It is based on the equivalent
continuum illustrated in Fig. 3: the branches connecting the centers of contacting particles determine those
polygons whose union gives the equivalent continuum. Its nodes are the particle centers, and its boundary is
a zigzag line going through the centers of boundary grains.

A continuous translation field is defined on this equivalent continuum in such a way that in any node the
translation vector is equal to the translation of the corresponding particle centre; and linear along the
branches between contacting grains. The field is not defined in the interior of the polygons. The exact data
of the field will not be necessary; only the existence of a continuous field is assumed.

The average translation gradient of polygon L can be expressed with the help of (4b) as a boundary inte-
gral along the boundary line of cell L. In order to derive an expression for the average translation gradient
for the whole domain in terms of relative particle translations, the authors introduced the rotated polygon
vector, g, that belongs to the contact formed by particles p and ¢. If the pg branch is between two neigh-
boring polygons, then it connects the centers of the two polygons; and if pg is on the boundary of the equiv-
alent continuum, then g#¥ connects the centre of the polygon and the centre of the pg boundary branch (see
Fig. 4). Its direction is also uniquely defined in Kruyt and Rothenburg (1996).

The polygon vector 4 is obtained by a positive rotation over 90° of g/

W = —eygf. ©)

(812 = + 1,821 =—1and €11 = & = 0)

Let ¢ denote the contact formed by p and ¢. Note that if the scalar product of the branch vector and the
polygon vector is determined in every contact, and then these products are summed up, the total area of the
equivalent continuum can be determined

Fig. 4. The rotated polygon vector.
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1, ..
Azzz(l[h[). (10)
(c)
So the polygon vector plays the same role in the Kruyt-Rothenburg equivalent continuum as the comple-
mentary area vector in the 2D version of the previous equivalent continuum consisting of triangles.
Applying the polygon vector, Kruyt and Rothenburg succeeded to express the average translation gra-
dient in the following discrete form:

1 ‘
de, = > ddujh, (11)
()

where the summation is carried out over all contacting pairs of particles, and where the vector dAu is the
relative translation of the two particle centers. The symmetric part of the tensor (11) is the Kruyt—
Rothenburg strain.

Note that the Kruyt—Rothenburg strain and the 2D version of the Bagi strain are equal if the boundaries
of the two equivalent continua coincide.

2.2.3. The strain of Kuhn

The next version of strain, proposed by Kuhn (1997, 1999), is also valid for two-dimensional assemblies of
convex grains. The equivalent continuum is practically the same as in the case of the Kruyt-Rothenburg
strain (the only difference is that only those particles are considered that take part in the load-bearing frame-
work). Defining a translation field in the same way as in case of the Kruyt-Rothenburg strain, the average
translation gradient in polygon L can be expressed in terms of the relative translations of contacting grains

lekz
6

1 -
def; =7 dAu b (12)
(

s
Here dAu!" is the relative translation of the two particle centers that form the k; edge of the polygon, bf,‘z is
an outwards normal vector to edge k-, with a length that is equal to the length of the k, edge (see Fig. 5), 4~
is the area of the polygon, and 0"1** is a multiplier whose exact definition can be found in Kuhn (1999) for
different possible cases.

The area-weighted average of these translation gradients gives the average translation gradient for the
whole equivalent continuum

) L1
de; =Y e = c > (Z ofihe dAujflb{.Q). (13)
(L) (L) \(k1,k2)

Its symmetric part is the average microstructural strain proposed by Kuhn.

Fig. 5. The Kuhn polygons.
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Since the boundaries of the equivalent continua of the Kruyt-Rothenburg strain and of the Kuhn strain
are the same, and since the translation field is defined in the same way, the meaning of (11) and (13) is the
same and hence the two strains are equal.

2.2.4. The equivalent-continuum strain of Cambou et al.

Another equivalent continuum strain was proposed by Cambou et al. (2000) and Dedecker et al. (2000),
also for 2D analysis. In this definition the particles are non-equal circles (though the definition can be gen-
eralized for particles having any convex shape). The equivalent continuum consists of triangles formed by
the branches between the centers of neighboring (not necessarily contacting) particles. To get these trian-
gles, first the polygons that are formed by those branches connecting the centers of contacting grains have
to be prepared. Then the polygons are divided into triangles with the help of their diagonals. (The sub-
division into triangles can be done in many alternative ways; all of them lead to the same result.)

A continuous translation field is assigned to this equivalent continuum in a manner similar to that in the
case of the Bagi strain. The translations in the nodes are equal to the translations of the particle centers; the
translations along the edges and in the interior of the cells are defined by linear interpolation of the nodal
translations. The translation field is linear within every triangle, so a constant gradient can be assigned sep-
arately to every cell. The area-weighted average of these gradients can be expressed in terms of the relative
translations between neighboring particle centers

de;; = 34 ZAL (Z dAu/yt> ) (14)

where the index L spans the list of triangles, and index s spans the triad of edges of triangle L. The vector
dAu; is the relative translation between the two grains forming edge s. Vector y; is a geometrical character-
istic that can be determined with the help of the location of the nodes (see Cambou et al., 2000 for details).
The symmetric part of the tensor in (14) is the equivalent-continuum strain of Cambou et al.
The meaning of (14) is the average translation gradient for a translation field that satisfies the require-
ments of Kruyt and Rothenburg

¢ the translations in the nodes of the polygons are equal to the translations of the particle centers;
¢ the translation field is linear along the polygon edges;
e the translation field is continuous in the whole domain.

Consequently, the equivalent continuum strain of Cambou et al. is equal to the Kruyt—-Rothenburg
strain.

2.2.5. The Cosserat strain of Kruyt

The above strains are based purely on the translations of particle centers. The microstructural interpre-
tation of the Cosserat strain, introduced by Kruyt (2003), differs from all of them by taking into consider-
ation the particle rotations as well. According to Eringen (1999), the 2D version of the Cosserat strain in a
continuum is defined as

0du;
ax,-
where du; and dw are the translation and rotation of point x;, and &; is the 2D permutation symbol. To
interpret this variable in a microstructural context, the equivalent continuum of the Kruyt-Rothenburg

strain in Fig. 3 was modified: in the new version the boundary of the domain goes through those points
(‘boundary nodes’) where the boundary grains are in contact with the external neighborhood of the ana-

de;; = — ¢ dw, (15)
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Fig. 6. The equivalent continuum of the Cosserat strain of Kruyt.
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lyzed assembly (see Fig. 6, from Kruyt (2003)). So in addition to those polygons in Fig. 3, there are bound-
ary polygons that lic within the domain and form its boundary. A boundary polygon contains a boundary
branch (connecting two boundary nodes), and the ‘centre’ of a boundary polygon is defined as the midpoint
of the boundary branch. Then the rotated polygon vector g and the polygon vector #/? are defined accord-
ing to 2.2.3.

A continuous translation and rotation field can now be defined. Similarly to Section 2.2.3, let the trans-
lations and the rotations in the internal nodes of the equivalent continuum be equal to the translations and
rotations of the corresponding particle centers. In the boundary node f, the translation duf; and the rotation
dw” are the given displacements of . Note that in case of non-deformable boundary contacts du,[j is deter-
mined from the displacements of that particle p which contains f

du = du? — &, do? (16a)
dof = da?, (16b)

where du/ is the translation of the centre of p and dw? is the particle rotation, and #” is the vector pointing
from the particle centre to the boundary node f3. In this case the rotation in the boundary node is also equal
to the rotation of the corresponding particle. However, this is not a necessary requirement: the boundary
contacts may be deformable, and in this case dufj may be different from the right side of (16a), and do” may
differ from do?.

Finally, linear translation and rotation fields can be defined along all (internal and boundary) branches.
It is assumed that there exist a continuous translation field and a continuous rotation field also in the inte-
rior of the polygons, but the fields are not defined in the interiors.

The area average of the Cosserat strain for a domain 4 is

1 1 [ /3du
deij :2 fdeijdA :Z % <Flj—b,jda)) d4. (17)

(4) (4)

After long and complicated calculations, this could be expressed in a discrete form
> 1 C1,C
del:,- :Z ;dv‘]—hi. (18)

Here dvf is the relative translation at the contact point of branch c. If branch c is formed by particles p and
¢, then
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dvf = dof? = (duf — e do?) — (duf — g7 do?) (19a)

1

as in (2); if the branch is formed by particle p and the boundary point /3, then
dvt = do”’ = duf — (duf - sl;,-f;ﬁdwp). (19b)

The microstructural Cosserat strain of Kruyt in (18) differs from the Kruyt-Rothenburg strain in (11) in
two respects:

e the equivalent continuum contains boundary polygons in addition to those polygons of the Kruyt—
Rothenburg equivalent continuum;
¢ (18) contains the effect of particle rotations in addition to the particle translations, unlike (11).

2.3. Best-fit strains

The best-fit strains are based on finding that translation gradient tensor which gives the smallest devia-
tion from the characteristic displacements of the system. The characteristic displacement can be the trans-
lations of particle centres, the relative translations at the contacts, etc. Depending on the kind of
displacement to be approximated by an average translation gradient, different versions of best-fit strains
are gained.

2.3.1. Cundall’s best-fit strain
This approach was proposed by P.A. Cundall, and applied in the widely known softwares PFC and
TRUBAL. Cundall’s definition is valid for particles with arbitrary shape. The proposed definition is based
on the translations of the particle centers, while the particle rotations are not taken into consideration.
Let x¥ be the initial position of the centre of particle p at the beginning of the displacements. The
translation of the centre of particle p is duf. N’ is the number of all particles in the analyzed assembly.
The average of the position vectors of particle centers is

1 &
x) = N Zx?, (20)

g=1

and the average of the particle translations

1 &
du) = 7 Zduf’ (21)
N =

The deviations of the individual particle positions can be calculated as

D= — (22)

while the relative translations of the individual particles with respect to the average translation are deter-
mined as
ditt = du? — du?. (23)

Imagine that the assembly deforms in such a way that every particle translation exactly corresponds to a
uniform translation gradient tensor o;;. In this case we would find for the individual particle translations
that they can be calculated from o in the following way:

di{f) = OCj,‘.%.i-,. (24)
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However, such a special situation usually does not happen, so in general cases we would find for any arbi-
trary oy; that
dit} — a7 # 0. (25)

Now let us find that specific «;; tensor for which the square sum of the deviations in (25) is the smallest (i.e.
that o; which gives the ‘best fit’ to the particle translations)

NP
p=I
(the summation is carried out along all particles). The function Z is minimal at that o;; for which
oz
=0 27
aakl ( )
for every (k, /). (It gives four equations in 2D, and nine equations in 3D.)
In 2D the four equations in (27) are written in details as
NP NP NP
PR DR e > di %
p=1 p=1 i _ p=1 (28)
NP s NP . azl NP s
S LY > dit%
p= p= p=

(i equals to 1 or 2).

The coefficient matrix on the left is always positive definite iff N >3 and there exist at least three par-
ticles whose centers are not located along the same straight line. (The proof is given in Bagi (2005)). This is
the sufficient and necessary condition of the existence of Cundall’s best-fit strain in 2D.

From now, z; denotes the inverse of the coefficient matrix. Applying i = 1 in order to determine «;; and
os1, and i =2 for the calculation of o, and 55, the solution of (28) can be written in the general form

NP

Olij = Zik Z dl}f)}f (29)
p=1

The tensor in (29), which minimizes the square sum in (26), is by definition the best-fit translation gra-
dient of Cundall

NP
dej =z Yy A% (i,j,k=1,2), (30)
p=1

and its symmetric part is Cundall’s best-fit strain.
In 3D the analysis is basically the same. Instead of the four equations in (28), the 3D analysis gives nine
equations

NP NP
<Ziﬁiﬁ,>am=zdﬂf%§ a1
p=1 p=1

(n, m and i take the values 1, 2 and 3). The coefficient matrix on the left side of (31) is always positive def-
inite iff N7 >4 and there exist at least four particles whose centers are not located along the same plane. (The
proof is also given in Bagi (2005)). This is the sufficient and necessary condition of the existence of Cundall’s
best-fit strain in 3D. Denoting the inverse of the 3 x 3 coefficient matrix Zgilfcﬁfcﬁ by z;; again, the best-fit
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translation gradient can be calculated in the form given in (30), though the indices i, j, k now take the values
1, 2 and 3.
Note that this strain version does not take into account the particle rotations.

2.3.2. The best fit strain of Liao et al.

The best fit strain proposed by Liao et al. (1997) is based on a similar line of thought, but instead of the
particle translations, its fundamental quantity is the contact deformations that can be determined from
the particle translations and rotations. Let particle p the first and ¢ the second grain forming contact c.
The contact deformation, dvf, is given by (2).

If every particle would move exactly according to a uniform translation gradient o;;, then the deforma-
tion at ¢ would be

dU? = O(jilj' (32)
However, usually this is not the case, and for a general o; we would find that
duf — ol # 0. (33)

Similarly to the definition of the Cundall strain, let us find again that o;; for which the square sum of the
deviations in (33) is the smallest

e
Z= Zl(dvf — a;l) (v — o5) — min 3

(the summation now includes all contacting pairs of grains in the assembly). The function Z becomes

minimal at that o, for which
0z
—Z 0
Rl

(35)

for every (k, /). (Again, (35) gives four equations in 2D and nine equations in 3D.)
In 2D the four conditions in (35) are expressed in a system of linear equations that is rather similar to
(28)

Mc o Me o M :
TN, > dis
c=1 c=1 oy c=1
5w |2 .
M ¢ 1c M ¢ 7c 0l M c7c
;lllz 21212 ;dvilz

(iis 1 or 2).

The coefficient matrix on the left side of (36) is positive definite if there exist at least two branch vectors
in the system that are not parallel to each other. This is the sufficient and necessary condition of the exis-
tence of the Liao et al. best-fit strain in 2D.

The nine equations in the 3D analysis can be summarized as

e e
(Z 1;1;) o = Y _dels (37)
c=1 c=1

(n, m and i can be 1, 2 or 3). The coefficient matrix in (37) is positive definite if there exist at least three
branch vectors in the system that are not parallel to any common plane. This is the sufficient and necessary
condition of the existence of the Liao et al. best-fit strain in 3D.
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Let w;; denote the inverse of the coefficient matrix in (36) or (37). The «;; tensor that minimizes the square
sum in (34) can be determined in the following way:

e
o = wy »_ dvsIg. (38)
c=1
This a;; is the best-fit translation gradient of Liao et al.
e
de; = wy > dvslg, (39)
c=1

and its symmetric part is their proposed best-fit strain.
Note that the Liao et al. strain takes into account the particle rotations, unlike the Cundall strain.

2.3.3. The best-fit strains of Cambou et al.

Two improved versions of the Liao et al. strain were proposed by Cambou et al. (2000) (though their
DEM analysis was restricted to 2D only, the theoretical results are valid also in 3D). Their first suggestion
is to consider the relative translations dAu¢ instead of the contact deformations dvf in the square sum in
(34), which means to exclude the particle rotations from the analysis. The relative translation of the first
particle p and second particle ¢ forming contact ¢ is simply

dAuj = duj — duj. (40)

Considering the contacting pair of grains (similarly to Liao et al. (1997)), the first best-fit translation gra-
dient of Cambou et al. is
I
de; = wy »_ dAul, (41)
c=1
where the tensor wy is the same as in (39). So the sufficient and necessary condition for the existence of the
first best-fit strain of Cambou et al. is the same as for the Liao et al. strain.

Their second suggestion is to take into account not only the contacting, but also the neighboring pairs of
grains. (‘Neighboring’ means such a pair for which the two particle centers are connected in the triangular
system in Section 2.2.5.) Let M° denote the number of all (contacting or neighboring) pairs of grains for
which a branch exists in the triangular system; and let w;; denote the inverse of the suitably modified coef-
ficient matrices in (36) or (37). The second best-fit translation gradient tensor of Cambou et al. is

I
de v Y dAusIy, (42)
c=1
and its symmetric part is the proposed strain tensor. (Note that this version also excludes the particle
rotations.)

The sufficient and necessary condition of the existence of the second best-fit strain of Cambou et al. is to
have at least two neighboring pairs (at least three neighboring pairs in 3D) that are not parallel to each
other (in 3D: they are not parallel to any common plane).

With the help of discrete element simulations Cambou et al. (2000) compared the Liao et al. strain and
their first and second strain versions to the equivalent-continuum strain. Their first best-fit strain was closer
to the equivalent-continuum strain than the version proposed by Liao et al., but still a significant deviation
was found. On the other hand, the second best-fit strain showed an excellent agreement with the equivalent-
continuum strain.
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2.4. The Satake strain

The microstructural strain definition of Satake (2004) is valid for assemblies of circles or spheres. At first
sight it seems to be an equivalent-continuum strain just like those in Section 2.2, since it is also based on a
tessellation system (‘contact cells’). But the Satake strain is basically different from the equivalent-contin-
uum strains, since there is no continuous translation field assigned to the contact cells, and no cell defor-
mations are analyzed.

The geometrical background of the definition is based on the generalized Dirichlet-tessellation (Fejes
Toth, 1953) that is shown in thick lines in Fig. 7. The generalized Dirichlet cell belonging to particle p is
formed by those points of the space that have a shorter or equal tangent section to particle p than to
any other particle. The points along a common face of two neighboring cells have an equal tangent length
to the two circles/spheres (so the common faces are the power lines/power planes of the two grains). This
cell system is also called Laguerre tessellation (Okabe et al., 2000).

The Delaunay-cells (thin lines in Fig. 7) are formed by the branches connecting those centers of particles
that have a common face in the generalized Dirichlet—tessellation. (Note that the Delaunay-branch is al-
ways perpendicular to the corresponding Dirichlet-face.) The nodes of this system are the particle centers,
and the branches correspond to contacting or neighboring pairs of particles.

Based on these two tessellations, Satake defined the contact cells (see the 2D version in Fig. 8). A contact
cell belongs to a pair of neighboring or contacting grains. The cell is determined by the face of the general-
ized Dirichlet-system, and by the corresponding Delaunay-branch.

Consider the contact cell of the AC pair. The corresponding branch vector is //. The vector ftfc belongs
to the face between A and C. Its direction is perpendicular to the face, and its magnitude is equal to the
length (2D) or area (3D) of the face. The area (2D) or volume (3D) of the contact cell is calculated as

A% = () in 2D, (43a)

W — N =

sAC,
VA€ = (KK, ) in 3D. (43b)
From now on, the scalar D denotes the dimension of the analysis.

Consider now contact cell e. The second particle, g, expresses /i contact force on the first particle of the
contact, p. The contact deformation, duf, is calculated from the particle displacements according to (2). The
stress tensor of; and the translation gradient tensor dej; are, by definition, equal to

Dirichlet tessellation

Delaunay network
(Broken line indicates
virtual branches)

Fig. 7. The generalized Dirichlet-tessellation and the corresponding Delaunay-cells.
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\_

Fig. 8. The contact cells of Satake: an internal cell belonging to branch 4C, and a boundary cell belonging to branch BC.

e 1 epre e 1 ere
0;:2146 Iiff if D=2, and o = 35 Iiff if D=3, (44)
(< 1 7€ € 1 € 1 7€ € 1
del.j = Fhl— de if D= 2, and del.j = Whl de if D= 3. (45)
By assuming small particle displacements, the increment of the internal work is
dw =Y (fide)) =D (lihy)(0f de). (46)
(e) (e)

(The summation is done for all contact cells.)
The average translation gradient of the whole system is, by definition, given by

1 o
> hidvg if D=3. (47)

de[j = ﬁ ze:hl de if D= 2, and de,-j = W -
(e)

@ ()

The symmetric part of de; is the microstructural strain tensor defined by Satake.

In spite of the theoretical beauty and importance of this variable, since the generalized Dirichlet—tessel-
lation has to be compiled for the system, and the vectors fzf have to be exactly determined, the numerical
calculation of this strain version is very time-consuming and may hinder their immediate application.

3. Discrete element simulations

The aim of the numerical analysis was to compare the different microstructural strain versions with the
overall, macro-level deformations. The simulations were performed with the help of PFC-2D (Itasca, 2002),
a discrete element software based on the 2D dynamical Cundall model (Cundall and Strack, 1979). The
analyzed assemblies consisted of circular particles located in a square domain surrounded by four straight
walls.

The following microstructural strain versions were analyzed:

o the Bagi strain;
e the Kruyt—Rothenburg strain;
e the Liao et al. best-fit strain;
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e Cundall’s best-fit strain;
o the microstructural Cosserat strain of Kruyt.

The following strains were not measured in the tests:

e the equivalent-continuum strains of Kuhn and of Cambou et al., since these are equal to the Kruyt—
Rothenburg strain;

e the two best-fit strains of Cambou et al., since there are convincing numerical simulations about their
behavior in Cambou et al. (2000);

e the Satake-strain, because of the enormous computational cost associated with the preparation of the
contact cells.

Three small assemblies and one large assembly was generated with the help of the Inwards Packing
Method (Bagi, 2005). The small assemblies consisted of 1037, 1040 and 1035 circular grains, all of them
located in a 30 cm x 30 cm square domain. The large assembly contained 16,571 grains and the surrounding
square was 120 cm x 120 cm. The grain size distribution was the same in all cases. The particle diameters
were as follows:

30% 0.5 — 0.8 cm

38% 0.8 — 1.0 cm

26% 1.0 — 1.3 cm

6% 1.3 — 1.5 cm.
The generated assemblies were compacted by moving the walls inwards until the porosity reached the value
of 13.1%. At this stage the domain sizes were 29.2803 cm x 29.2803 cm and 117.1212 cm x 112.1212 cm at
this stage.

The contacts were linearly elastic, with an equal normal and shear stiffness of 10* N/cm. Two different

friction coefficients (f) were applied: the above assemblies were tested with f= 0.2, and then the tests were
repeated with f=0.01.

By slowly translating the walls, two different kinds of deformations were produced in the tests (see Fig. 9
as well):

(a) uniaxial compression, by translating the bottom and top walls towards each other, until 1% vertical
contraction;

(b) biaxial shear, by vertically compressing and horizontally extending the domain, until 1% strain was
produced in both directions.

(@) ()

0 0 +107 0
e = e=
0 -107 0 -107

Fig. 9. Prescribed deformations of the surrounding domain: (a) uniaxial compression and (b) biaxial shear (the figures contain the final
macro-level strains).
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The macro-level deformation was understood as the deformation of the original square domain sur-
rounded by the walls. The microstructural strains were compared to this deformation.

The equivalent-continuum strains were determined in the following way:

The Bagi strain was calculated with the help of the boundary integral (8), along the boundary line illus-
trated in Fig. 2. The Kruyt-Rothenburg strain was also determined with the help of a boundary integral
that was carried out along the boundary shown in Fig. 3. In order to get the Cosserat strain of Kruyt,
the displacements of the boundary points were defined according to (16). Then (18) was applied in order
to calculate the average Cosserat strain.

The two best-fit strains were calculated according to (30) and (39).
The simulation results are illustrated in Figs. 10 and 11:

e On any diagram, the horizontal axis shows a component of the macro-level deformation (e.g. ej; in
Fig. 10a and c, ey, in Fig. 10b and d). The total strain, 1%, was produced in ten equal deformation steps,
and after every step the characteristic components of the different strain versions were determined. The
values from 1 to 10 on the horizontal axes indicate these steps.

e The vertical axis measures the ratio of the different microstructural strains related to the macro-strain. (If
a microstrain would exactly be equal to the macro-strain, the value 1.00 should be measured vertically.)

The simulation results show that the equivalent-continuum strains of Bagi and of Kruyt and Rothenburg
were close to the macro-level deformations in all tests, and they were also close to each other. Even in the
worst cases the deviations hardly reached a few percent of the macro-strain.

A clear size effect could be detected in both strain versions. Comparing the results of the large and of
the small assemblies, the strains of Bagi and of Kruyt-Rothenburg was closer to the macro-strain in case

16571 grains; f =0.01; biaxial

16571 grains; f =0.01; biaxial

1.3 1 1.1 7
124 p——— P s " —— "G S S g
—¢— Bagi —o—Bagi
4 1l e o oo o0 —0o 000
11 Rothenburg 0.9 Rothenburg
—ee e e LiaoChang LiaoChang
1.0 1 0.8 A
—x— Cundall —x— Cundall
0.9 ._.’./._.___._.___._.\. —e— Kruyt 0.7 1 —e— Kruyt
0.8 0.6 —+—+—+———————————
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
(a) ell (b) e22
16571 grains; f = 0.2; biaxial 16571 grains; f = 0.2; biaxial
1.3 7 1.2 7
1.2 = macro 1.1 1 = macro
—¢— Bagi —o—Bagi
1.11 1.0 1 [ . S S 2 S oS o S— Y
. Rothenburg . Rothenburg
LiaoChang LiaoChang
1.0 A e e e e e O 0.9 -
—%— Cundall — o o o o oo "0 ., Cidal
0.9 1 —e— Kruyt 0.8 1 —e— Kruyt
9o o o o o o o o o
0.8 ——+———————————— 0.7 —+—————————

(©)

(d)

Fig. 10. Biaxial tests on the large assembly: (a) and (b): frictionless; (c) and (d): frictional grains.
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11 1 1037 grains; f =0.01
1.0 A ey = macro
—o— Bagi
0.9 1 Rothenburg
LiaoChang
0.8
—x*— Cundall
0.7 1 —e— Kruyt
0.6 +————————————————————
1 2 3 4 5 6 7 8 9 10
(@) €22
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0.91 Rothenburg
LiaoChang
0.8
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0.6 +——F———————————————————
1 2 3 4 5 6 7 8 9 10
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Fig. 11. Uniaxial tests on small frictionless assemblies.

of the large assembly than in case of the small assemblies. The reason of this size effect is that in both strain
versions the strain is measured within a domain whose boundary goes through the centres of boundary
particles, while the macro-strain is measured in a domain whose boundary goes through the boundary
contacts of the same particles. As the number of particles in the assembly increases, the relative thickness
of this layer (compared to the domain size) decreases. (In case of the other variables such an effect could not
be noticed.)

The best-fit strain of Cundall was not reliable: in many cases it was in a good agreement with the macro-
strain, but sometimes the deviation was rather significant, 20-30%. The reasons of the deviations are not
clear yet: further investigations are necessary on the issue.

The Liao et al. strain significantly differed from the macro-strain in most cases (the deviation often
reached or exceeded 40-50% of the macro-strain).

The microstructural Cosserat strain of Kruyt always under-estimated the macro-strain: in the uniaxial
tests the difference was usually around a few percent, while in the biaxial tests it often reached 10-15% (this
is probably the result of the more significant particle rotations in the biaxial tests).
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4. Summary

The paper focused on the theoretical and numerical analysis of the different microstructural strain ten-
sors. Ten different versions were introduced and compared, by theoretical and numerical investigations.
The following results were found:

e The Kruyt-Rothenburg strain and the Bagi strain were in good agreement with the macro-level defor-
mations in discrete element simulations. (The former can be applied only in 2D, though it is more easy to
calculate.)

e The strain of Kuhn and the equivalent-continuum strain of Cambou et al. are equal to the Kruyt-Roth-
enburg-strain, so they are also suitable for the description of the overall deformations in 2D.

e Among the best-fit strains, in the case of frictionless particles the strain of Cundall was nearly as close to
the macro-deformations in DEM simulations as the previous strain versions. The advantages of the
Cundall strain are its calculational simplicity, and its validity in 3D.

o Numerical results in the literature show that the 2nd best-fit strain of Cambou et al. is also very close to
the macro-level deformations. Its disadvantage is that the triangularization of the granular system makes
the strain calculations much more time-consuming than in the case of the Cundall strain.

e The simulations in the present paper confirmed the results of Cambou et al. (2000) that the best-fit strain
of Liao et al. did not give a good estimation of the macro-deformations.

e The microstructural Cosserat strain of Kruyt was close to the macro-deformations in uniaxial compres-
sion tests, but significantly under-estimated them in biaxial tests.
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